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* 

The Ecc  khc7': you iic? JL z s k - d  t o  s p e a k  on t n e  Gmino a c i e  

code zt y ~ u r  znnuzl m-c'inc, i n d i c a i c s  tile . r i z t  i n t z r c s t  t h a t  

h i s  su.;jcc iias Z L ' ~ U S C C  ;liilonG pnopl - whose :roulc i s  cen t i r - c '  i n  

ly t o  the synthesis of all the. p r o ' - i n s  '32; r7zc Eound i i i  -very 

Z o r m  or' l i l E .  It i s  p r o t e i n s  t h a t  i7rc respons ib le  for 1:he d i f f e r -  

enczs  between va r ious  l ivinc; spec ie s ,  and f o r  k h ~  bioloc, ical  syn- 

t h e s i s  of all non-pro 'c in  molccules, s ince  thesc a r c  produced by 

cnzymes, which a r e  fhcmselves p r o . e i n s .  

All of u s  a s  s udents  of nu ' i r i t ion  a r e  f a m i l i a r  with t h e  fac: 

t h a t  p r o t e i n s  a r e  composed of ami-o a c i d s ,  and t h a t  t h e  q u a n t i t i e s  h 

of anino  a c i d s  vary i n  the  d i f f e r e n t  p r o t e i n s .  I n  a d d i t i o n  L o  t h i s  

cjeneral p r i n c i p l e ,  i t  i s  known t h a t  each p ro ;e in  con ta ins  a Cie2ini?c 

sequence formed by l i n k i n s  -2ociethZr va r ious  numbers of t : ? ~  2 0  amino 

a c i d s  which a r e  shown i n  Taale 1. The o rde r  i n  wnich :hey  a r e  

arranged i s  c o n t r o l l e d  ~-'y the  sequence of 3 subslances i n  molecules 

of deoxyribonucleic  ac id  (DNP) .  These 4 subs tances  a r e  t h e  bases  

adenine ,  c y l o s i n e ,  guanine and thymine (A,C,G,T). This  conclusion 

h a s  fax-reaching impl ica t ions .  Onc of t hese  i s  t h a t  the d i f f z r e n c e  

between t w o  s p e c i e s ,  such a s  a human being and a pine t r e e ,  i s  du2 
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solely t o  -12 nutdxr and sequcncc 0 2  the 3 bascs, I ' , ,C ,G CnS, T i n  

DN". T ; i i s  ~ o l l o w s  Z r o r J  hc € a c t  t , lzt  211 animals and i i i g n c r  plan:-s 

c,row L'roin L J r t i l i z c d  OJL', i n  which ths on ly  e s s e n t i a l  dizferencc. i s  

' he b a s e  coinposit ion or' t h e i r  DNA. Je can g o  eTJen f u r '  h e r  i n  our  

analoc,y; hc sc7ms r u l e  a p p l i t s  'co yeas ts ,  b a c t e r i a  an6 cvii: t o  sucn 

sinal1 p a r t i c l z s  c's kne  smallpox vi rus .  i'Je a r e  confronted wi:.h 2 

unifyinLj p r i n c i p l e  i n  dioloqy and tne  t a s k  m f o r e  u s  is  ' 0  t r a n s l a l e  

i'- th rou_n  i ' s  var ious  compl-xit ies.  

Its s t r u c t u r e  resexblzs : h a t  of a 17Sider. T n c  t w o  u p r i 5 h : s  of khc 

lzd6er  a r z  c.mins nacc  of phosphate groups jo ined  by moleculzs 0: 

dco::yri.aose, a ;-czr~on-a':om suc_ar. Thc cha ins  run i n  opposi:-e 

C i r e c t i m s ,  a s  shown i n  f i 5 u r c  1. The runcjs of ' h e  ladder  arG p a i r s  

of h s z s  jo incd  .3y hy3rojen honds, such thac  adcnine i s  zlways 

p2ireG w i ' A  thy-minc and cy::osine w i  11 Guanine. These runc,s, o r  

u n i  s ,  may 13- placcd i n  s, - J i r t u a l l y  i n f i n i t e  number of different 

sequences.  This  i s  i l l u s k r a t e d  i n  Tzblz 2.  T h e  s i z e  of 

such numbers i s  i l l u s ' r a t e d  by t h e  oll; fable about t he  inventor  of 

L'ile same of chess, who was sa id  t o  h a v e  been a s k e l  by h i s  King :io 

name a reward f o r  'Lhc achievement. Tha nan r e p l i e d  t n a t  a11 he would 

. ' 2 ,  . 
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ask  was one g ra in  of rice for  the f i r s t  square of t he  chessboard,  

two f o r  the second, four  f o r  the  t h i r d ,  doubling each t i m e  u n t i l  

the s ix ty- four th  square had been reached, The King immediately 

- granted t h i s  simple r eques t ,  only t o  f ind  t h a t  t h e  requirement was 
64 

unmanageable; indeed, t h e  s ix ty- four th  square alone needed 2 

g ra ins  of r ice ,  which would weigh more than 1600 b i l l i o n  tons .  

S imi l a r ly ,  a sequence of 64 l e t t e r s ,  using A , C , G  and T i n  a l l  possi-  

ble combinations,  can be w r i t t e n  i n  4 d i f f e r e n t  ways. This  number 
53 

is  even more impressive than the  example from the  chessboard; i t  i s  

about 2 b i l l i o n  b i l l i o n  b i l l i o n  b i l l i o n .  Such a sequence, i n  terms 

of DNA, would represent  on ly  about one-seventh of t h e  length of a 

t y p i c a l  gene. Obviously these  vast  numbers of d i f f e r e n t  p o s s i b i l i -  

t i e s  cannot e x i s t  i n  na tu re ,  Only a handful of combinations can 

surv ive  the  process  of n a t u r a l  s e l ec t ion  t h a t  t akes  place during 

evolu t ion .  The surviving molecules a r e  those t h a t  c a r r y  the  in fo r -  

mation leading  t o  the  production of v iab le  combinations of pro te ins .  

I t  i s  bel ieved t h a t  the  f i n a l  s t e p  i n  the syn thes i s  of p r o t e i n s  

i s  a c t u a l l y  d i r e c t e d  by a second form of n u c l e i c  a c i d ,  r ibonucle ic  

a c i d  (RNA), r a t h e r  than by DNA. We s h a l l  d i s c u s s  t h i s  l a t e r  but one 

reason f o r  :;his conclusion i s  t h a t  p r o t e i n s  a r e  synthesized i n  the 

cytoplasm of animal cel ls  r a t h e r  than i n  the  nucleus,  which conta ins  

almost a l l  t h e  DNA, 3 molecule formed by combining a s i n g l e  base 

wi th  r i b o s e  i s  c a l l e d  a nucleoside.  3NA i s  made  of nucleosides  l i nk -  

ed t o g e t h e r  by phosphates.  
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The amino ac id  code,sometimes termed t h e  g e n e t i c  code, i s  the 

key b y  which the sequence of bases i n  DNA i s  t r a n s l a t e d  i n t o  amino 

a c i d s  during the syn thes i s  of proteins .  The  amino ac id  code was 

s o l e l y  a mat te r  of theory u n t i l  1961 when a c r u c i a l  experiment w i t h  

a completely unpredictable  r e s u l t  was c a r r i e d  ou t  by Nirenberg and 

Matthaei a t  the National I n s t i t u t e s  of Health.  These two s c i e n t i s t s  

w e r e  i n v e s t i g a t i n g  the syn thes i s  of p ro te in  i n  e x t r a c t s  prepared from 

ce l l s  of the  common i n t e s t i n a l  organism Escherichia  c o l i .  Nirenberg 

and Matthaei added an a r t i f i c i a l  form of RNA t o  the e x t r a c t .  The 

a r t i f i c i a l  form contained only o n e  base,  u r a c i l ,  i n  long s t r a n d s  

of a compound c a l l e d  polyur idyl ic  ac id .  The experiment showed by 

r a d i o a c t i v e  t r a c e r  techniques t h a t  a new p ro te in - l ike  substance was 

formed by the E .  c o l i  enzymes i n  the e x t r a c t .  

ed only  one amino a c i d ,  phenylalanine.  The code for  phenylalanine 

therefore cons is ted  only of u r a c i l .  (1) 

T h i s  substance contain- 

T h i s  famous experiment bridged the l a s t  remaining gap t h a t  had 

separa ted  t h e o r e t i c a l  gene t i c s  and t e s t - tube  biochemistry.  It now 

became experimental ly  poss ib le  t o  search for  codes f o r  t he  o the r  20 

amino a c i d s  (Table l), t h a t  a r e  concerned i n  the syn thes i s  of pro- 

t e i n s .  

It had previously been concluded t h a t  the code d id  not  c o n s i s t  

of e i ther  1 or  2 bases  per amino a c i d ,  simply because there a r e  2 0  

d i f f e r e n t  amino a c i d s  and only 4 d i f f e r e n t  bases.  There a r e  only  
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1 6  d i f f e r e n t  ways of arranging A,C,G and T i n  p a i r s .  

o t h e r  reasons i t  is  thought t h a t  a t r i p l e t  of 3 consecutive bases  

i s  needed to code f o r  each amino ac id .  

ces of bases  i n  e i ther  of the t w o  s t r a n d s  of a DNA molecule a r e  un- 

restricted w i t h  respec t  t o  the ~ r C l ~ r  ifi which t hey  C)CCE: apparently 

any one of t h e  four  bases  can be next t o  any of the other Zour, a l -  

thouyh of course each base must be paired w i t h  the  corresponding 

complementary base i n  the adjacent  s t rand  a s  shown i n  Fig.  1. The 

same lack of r e s t r i c t i o n  i s  t r u e  of :-he amino ac id  sequences i n  the 

polypeptide cha ins  of pro te ins .  Any of the 20 amino a c i s s  can occur 

next  t o  any o ther .  Moreover, t h e  sequences i n  DNA a r e  subjec t  t o  

muta t iona l  changes i n  which one base r ep laces  another ,  o r  bases a r e  

added t o  or de l e t ed  from the DNA. Such rearrangements plus  the possi-  

b i l i t y  of lengthening of DNA molecules can be numerous enough t o  

account f o r  a l l  t he  evolu t ion  of l i v i n g  forms s ince  the f irst  appear- 

ance of l i f e  on e a r t h .  

For t h i s  and 

It i s  known t h a t  the sequen- 

L e t  u s  now t u r n  t o  the procedure by w n i c h  t h e  information en- 

t r a i n e d  i n  the ul t ramicroscopic  molecule of DNA is t r a n s l a t e d  i n t o  

p r o t e i n s .  The DNA molecule conta ins  2 s t r a n d s  w h i c h  a r e  held to-  

g e t h e r  by hydrogen bonds t h a t  bridcje Lhe gaps between adenine and 

thymine or between guanine and cytosine a s  shown i n  Figure 1. T h i s  

i s  c a l l e d  the  "Watson-Crick" pa i r ing  mechanism from the names of i t s  

d i s c o v e r e r s .  ( 2 )  The ex i s t ence  of t h i s  copying mechanism was ac- 
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t u a l l y  predicted by Watson and Crick before  i t  was shown t o  e x i s t  

i n  l i v i n g  systems. It means t h a t  when a new s t r and  of DNA i s  form- 

ed ,  the copying mechanism i s  such t h a t  A p a i r s  w i t h  T and G p a i r s  

I 

I with C a s  shown i n  Figure 2. Th i s  i s  the procedure by which heredi- 

t a r y  c h a r a c t e r i s t i c s  ;rye transmitted from paren t s  t o  ch i ldren .  A 

I second copying mechanism e x i s t s  by w h i c h  these c h a r a c t e r i s t i c s  a r e  

expressed i n  the v i s i b l e  a t t r i b u t e s  of an ind iv idua l  t h a t  a r e  here- 

d i t a r y  i n  o r i % i n ,  The l-irst s t e p  i n  this second procedure i s  a 

modified copying or t r a n s c r i b i n g  process  i n  w h i c h  the double s t r and  

of DNA i s  used a s  a template by an enzyme that asseEbles nucleoside 

t r i phospha te s  i n t o  molecules of RNA. Again, the sequence of bases  

i s  repeated i n  a complemenkary manner but  t h i s  t i m e  A p a i r s  w i t h  a 

f i f t h  base ,  u r a c i l  (U) ins tead  of thymine. Apparently i n  l i v i n g  cel ls  

~ o n l y  one s t r and  of the DNA i s  " t ranscr ibed"  by the enzyme t h a t  makes 

RNA. W e  can c a l l  th is  s t r and  of DNA the  "minus" s t rand  a s  shown i n  

Figure 3 ,  w h i c h  diagrammatically i l l u s t r a t e s  the " t r ansc r ib ing"  pro- 

cess. 

The  RNA molecules a r e  of severa l  types  and a r e  u s u a l l y  divided 

i n t o  three c l a s ses .  The first c l a s s  of molecules i s  c a l l e d  messenger 

FWA, These a r e  f a i r l y  long molecules and each one c a r r i e s  a s p e c i f i c  

message w h i c h  w i l l  decide the number and order of amino a c i d s  i n  a 

p r o t e i n .  Some of them c a r r y  the messages f o r  s eve ra l  p r o t e i n s  which 
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t h i r d  typc OX ai-; is  ; ib so r . z l  Ai?i%, \rhich h a s  a s t r u c t u r a l  funct ion.  

It  combines w i t h  ribosomal pro te in  i -c r  forn p?dticic:: ca l led  ribosomes. 

ments t o  explore  the  code. These molecules a r e  made by incubating a 

mixture  01 r ibonucleoside diphospha2es i n J i t h  a s p e c i f i c  enzyme, poly- 

I n u c l e o t i d e  phosphorylase. An important property of t h i s  enzyme i s  

- tha t  i t  a r r anges  the bases  i n t o  polynucleot ide s t r a n d s  containing 
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random sequences depending upon the proport ion of each base. For 

example, if the enzyme w e r e  furnished with a mixture of 5 p a r t s  of 

A and 1 Par t  Of C i t  would make s t rands  conta in ing  on the  average 

25 sequences of AAA, 5 of AAC, 3 of ACA, 5 of CAA, and one each of 

ACC, CAC and CCA. T h i s  p r i n c i p l e  i s  i l l u s t r a t e d  i n  Tabie 3 aiid is 

important i n  making deductions regarding the code. The proport ion 

of t r i p l e t s  wi th in  the s t r ands  of a polynucleotide i s  rerlected i n  

t h e  proport ion of amino a c i d s  i n  polypeptides t h a t  a r e  obtained i n  

the cell-free system. It i s  upon t h i s  concept t h a t  m o s t  of the pre- 

s e n t  'knowledge of i h e  airidno s z i d  cede is based !3:4,5), I n  Table 4 

a r e  summarized a l l  the proposed codes t h a t  have been discovered by 

t h i s  experimental  approach. 

The  l i s t  i s  no t  ye t  complete. There a r e  64 poss ib le  permuta- 

t i o n s  t h a t  can be w r i t t e n  using the 4 l e t te rs  A , C , G  and U ,  and a 

t o t a l  of o n l y  about 48 have been  assigned so f a r .  The missing assign-  

ments a r e  ind ica t ed  a s  blanks i n  Table 4 ,  for example, l A ,  l C ,  1 G  can 

be w r i t t e n  a s  ACG, AGC, CAG, CGA, GAC, GCA and only 3 amino a c i d s  have 

so f a r  been found t o  be coded by l A ,  lC, 1G. On t h e  other hand, s ix  

amino a c i d s  a r e  repor ted  t o  'be coded by l A ,  lC, lU, a s  shown i n  Table 

4. 

It i s  be l ieved  t h a t  the delay i n  f ind ing  more about the other 

16 " t r i p l e t s "  i s  due in p a r t  t o  the f a c t  t h a t  these 1 6  a l l  Contain 

G which t ends  t o  f o r m  cross- l inkages i n  the long molecules,  

resul ts  i n  the  s t r a n d s  becoming tangled  so t h a t  the message i s  los t .  

T h i s  
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It i s  a l s o  probable t h a t  a few of the t r i p l e t s  do  no t  code f o r  amino 

a c i d s ,  but i n s t ead  produce spaces be irween p ro te in  molecules.  

The experiments w i t h  synthetic polynucleot ides  i n  t e s t - tubes  

were made under condi t ions  very difr 'erent  f r o m  the d e l i c a t e  and in-  

t r i c a t e  processes  t h a t  Lake place i n  lit7ing cel ls ,  could the code 

found i n  the l abora to ry  experiments have any r e l a t i o n  t o  the system 

used by l i v e  organisms? A number of experimental  observa t ions  ind i -  

c a t e  t h a t  there i s  a t  l e a s t  a p a r t i a l  r e l a t ionsh ip .  

T h i s  second group of experiments was concerned w i t h  the chemis- 

t r y  of a u t a t i o n s .  One of rhe o r i g i n s  of Lhis approach goes back t o  

s t u d i e s  by Sanger and h i s  co l l abora to r s  on the chemistry of i n s u l i n  

( 7 ) .  T h i s  i n v e s t i g a t i o n  showed t h a t  the amino a c i d s  i n  a s p e c i f i c  

p r o t e i n  molecule d id  not  vary i n  kind o r  number and t h a t  they  w e r e  

always arranged i n  the same l i n e a r  sequence. 

s u l i n s  from d i f f e r e n t  spec ie s  were compared, such a s  beef and pork 

i n s u l i n s ,  there was found t o  be a d i f f e rence  i n  t w o  or three of the 

amino a c i d s  and i t  was always the  same amino a c i d s  t h a t  var ied  i n  

the same way. The c h a r a c t e r i s t i c  d i f f e r e n c e s  between a cow and a 

p i g  t h e r e f o r e  included changes i n  the amino ac id  sequence of insu- 

l i n  and, a s  was l a t e r  shown, of other p r o t e i n s  a s  w e l l .  Such changes 

were/discovered i n  mutations within a spec ie s  and i t  is  m o s t  i n t e r e s t -  

i n g  tha t  the first discovery was made w i t h  human beings who a r e  

sufferincr from a h e r e d i t a r y  d i sease ,  termed sickle-cell anemia. 

However, when two in-  

a l s o  
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The d i sease  w a s  shown t o  be caused by a s i n g l e  amino ac id  change 

i n  the hemoglobin molecule ( 8 ). T h i s  molecule conta ins  two 

i d e n t i c a l  "alpha" polypeptide chains and two i d e n t i c a l  "be ta"  poly- 

pept ide cha ins ,  each containing about 146 amino ac ids .  Normal people 

have a glutamic ac id  group i n  the s i x t h  l i n k  of the amino ac id  chain 

i n  be t a  hemoylobin. S i ck le -ce i l  anemia p a t i e n t s  have va l ine  i n  t h i s  

pos i t i on .  T h i s  s i n g l e  amino acid change i n  a sequence of 146 amino 

a c i d s  h a s  such a profound effect on the  properties of hemoglobin t h a t  

a f a t a l  anemia can r e s u l t .  It was c o r r e c t l y  predicted by Ingram tha t  

the change of a s i n g l e  nuc le i c  a c i d  base would s u f f i c e  t o  br ing  about 

the s u b s t i t u t i o n  of glutamic acid by v a l i n e  ( 9 ) .  Table 4 shows  

t h a t  t h i s  p red ic t ion  is real ized:  the code f o r  va l ine  i s  2U, 1G and 

a code f o r  glutamic ac id  is l A ,  lU, 1G. 

H e r e ,  t h e r e f o r e ,  i s  an explanat ion of mutations.  They can be 

due t o  changes i n  p ro te in  molecules. These changes a r e  a r e f l e c t i o n  

of a l t e r a t i o n s  i n  the number and kind of bases  a t  s p e c i f i c  l o c a t i o n s  

i n  t he  molecule of DNA. Unacceptable changes a r e  quick ly  el iminated 

by the process  of n a t u r a l  s e l ec t ion .  A t  r a r e  i n t e r v a l s  a change t akes  

p l ace  which improves the  c h a r a c t e r i s t i c s  of i t s  possessor.  These 

changes w i l l  survive and by such procedures we presume t h a t  i n  s o m e  

c a s e s  new species have evolved. 

By pa ins tak ing  a n a l y s i s  of the p r o t e i n s  i n  w h i c h  mutat ional  

changes have taken place i n  var ious spec ie s ,  about 38 d i f f e r e n t  ex- 

amples have been discovered where each amino ac id  changes t o  another  
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i n  the manner mentioned above for sickle-cell hemoglobin. 

a very i n t e r e s t i n g  l ist  f o r  various reasons; the first being t h a t  

t h e  l i s t  inc ludes  examples taken f r o m  human hemoglobin,from bac- 

terial c e l l s - a n d  f r o m  tobacco mosaic v i r u s  w h i c h  i s  perhaps the 

most p r imi t ive  form of l i f e  t h a t  h a s  been detected. Second, near- 

l y  a l l  the examples correspond t o  s ingle-base changes i n  t h e  proposed 

coding t r i p l e t s  i n  Table 4 .  It i s  indeed s t r i k i n g  t h a t  there should 

be so c l o s e  a s i m i l a r i t y  be tween  two sets of r e s u l t s  obtained q u i t e  

independently,  T h i s  encourages one t o  th ink  t h a t  t h e  t es t  tube ex- 

periments with s y n t h e t i c  nuc le ic  a c i d s  have produced information about 

the  code t h a t  correspond f a i r l y  c l o s e l y  t o  what happens i n  l i v i n g  or- 

Sanisms. The next ques t ion ,  and a m o s t  important one, is t o  f i n d  

out the order i n  w h i c h  t h e  bases a r e  placed i n  the ind iv idua l  t r i p l e t  

coding u n i t s .  

three A ' s  but  there a r e  t h r e e  ways of wr i t i ng  2A and 1C and s i x  ways 

of w r i t i n g  lA, 1C and 1U. Furthermore, 3 d i f f e r e n t  amino.acids  a r e  

coded by 2 A ' s  and 1C and 6 d i f f e r e n t  amino a c i d s  a r e  coded by lA, 

1 C  and lU, Therefore ,  the 3 possible  ways of w r i t i n g  2 A ' s  and 1C 

w h i c h  a r e  AAC,  ACA,  and CAA must be assigned t o  asparagine,  threonine 

and glutamine. 

T h i s  i s  

There i s  only one way t o  w r i t e  a t r i p l e t  conta in ing  

The single-amino-acid mutations a r e  l i s t e d  i n  Table 5 .  These 

have been found i n  p r o t e i n s  from a wide range of spec ies :  some i n  
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human hemoglobin, some i n  b a c t e r i a ,  and s o m e  i n  the p ro te in  of the  

tobacco mosaic v i r u s ,  which i s  r ep resen ta t ive  of the  smal les t  and 

s imples t  forms of p a r a s i t i c  l i f e ,  Table 5 inc ludes  the work of 

many d i f f e r e n t  l a b o r a t o r i e s ,  a s  reviewed elsewhere ( 5 ). The 

changes i n  tobacco mosaic v i r u s ,  except those ind ica t ed  a s  spontane- 

ous,  w e r e  produced by t reatment  w i t h  n i t r o u s  ac id .  It is  s t r i k i n g  

t h a t  i n  s eve ra l  cases  the  same exchange between two amino ac ids  has  

occurred both i n  human beings and the  tobacco mosaic v i r u s ,  h i n t i n g  

t h a t  t h e  same coding mechanism occurs throughout l i v i n g  organisms, 

I n  terms of the amino ac id  code, the changes i n  Table 5 should 

r ep resen t  a change of only  one of the three bases  i n  a coding t r i p -  

l e t ,  s i n c e  the chances a r e  overwhelmingly aga ins t  t w o  such changes 

t ak ing  place almost simultaneously. I n  36 ou t  of the 38 examples, 

the  amino a c i d  change does indeed correspond t o  a single-base 

change i n  the t r i p l e t s  i n  Table 4. 

w h e r e  ( 5 ) ,  the bases  i n  each t r i p l e t  may be placed i n  an order 

w h i c h  corresponds t o  the changes t h a t  take p lace  i n  the mutations; 

fo r  example if va l ine  i s  wr i t t en  a s  W G ,  one of the i so l euc ine  codes 

should be w r i t t e n  a s  UUA t o  account f o r  the change A t o  G i n  the mu- 

t a t i o n  i so l euc ine  t o  va l ine .  Space does not  permit a d i scuss ion  of 

t h i s  ques t ion ,  nor of the theo r i e s  regarding the mechanism by which 

sRNA b r i n g s  the amino a c i d s  t o  t he i r  correct p o s i t i o n s  on the m e s s -  

enger  RNA i n  the polysomes. 

Furthermore, a s  explained else- 
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The f i n d i n g s  reviewed i n  t h i s  short a r t i c l e  a r e  enough t o  show 

t h a t  s o m e  i n s i g h t  i s  poss ib le  i n t o  the  important b i o l o g i c a l  problem 

of the gene t i c  code. It i s  evident t h a t  only a beginning h a s  been 

made. Ce r t a in  n u t r i t i o n a l  problems a r e  i l lumina ted  by the new find- 

ings ;  we can now see why growth s tops  so r a p i d l y  i f  an e s s e n t i a i  

amino a c i d  i s  w i t h h e l d  from the d i e t .  Such a lack  w i l l  immediately 

s t o p  the  growing cells from completing the pre-ordered sequences of 

amino a c i d s  i n  the  cha ins  of pro te ins .  W e  can a l s o  understand why 

a p r o t e i n  such a s  ze in  can never conta in  tryptophan - i t  means t h a t  

the  gene i n  corn t h a t  makes ze in  simply does not fu rn i sh  any coding 

t r i p l e t s  f o r  tryptophan. 

I n  t he  f i e l d  of space science, there is an i n t e r e s t  i n  problems 

i n  biology,  such a s  the  o r i g i n  and evolu t ion  of l i f e  f r o m  non-living 

ma t t e r ,  and the poss ib le  ex i s t ence  of l i f e  elsewhere than on the  

e a r t h .  These problems confront us w i t h  the m o s t  fundamental biol- 

o g i c a l  ques t ions .  When d id  t h e  amino ac id  code first appear? Can 

any organisms evolve without the  code? For l i f e  t o  appear i n  other 

worlds ,  a r e  nuc le i c  ac id  and p ro te in  necessary,  or can s o m e  o the r  

chemical systems s u f f i c e ?  

F i n a l l y ,  we r e a l i z e  t h a t  the gene t i c  code i l l u s t r a t e s  one of 

t h e  g r e a t  p r i n c i p l e s  of nature .  

e n t i t i e s  a r e  b u i l t  by r e p e t i t i o n  and combination of a few small  funda- 

This i s  the p r i n c i p l e  t h a t  complex 

menta l  u n i t s .  

monumental t a s k ,  but the  b i o l o g i c a l  sc iences  a r e  to-day drawn togeth- 

The unravel ing of such complexi t ies  confronts  u s  a s  a 
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2r in closer union by the perception that the maintenance of life 

is centered around the properties of nucleic acids and proteins. 
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Table 1. The amino ac ids  t h a t  t ake  p a r t  
i n  p ro te in  syn thes i s  and t h e i r  abbrevia t ions  . 
a lan ine  

asparagine  
a s p a r t i c  ac id  
cys t e ine  
glutamic ac id  
g l u t  amine 
g lyc ine  
h i s t i d i n e  
i so l euc ine  

arginine 
a l a  
a rg 
a sN 
asp  
C Y S  

9lU 
9 l N  
9 l Y  
h i s  
i l u  

leuc ine  
ly s ine  
methionine 
phenylalanine 
pro l ine  
se r ine  
threonine 
tryptophan 
tyros ine  
va l ine  

l e u  

m e  t 

Pro 
ser 
t h r  
t r y  
t Y r  

lys 

va 1 



Table 2. 
Possible Numbers of Different Permutations of A,C,G and T 

1 

2 

One letter ( 4  = 4 (A,c,G,T) 

Two letters (4 ) =16 (AA,AC,CA,AG,GA,AT,TA,CC,GC,CG, ... etC) 
3 

4 

Three letters (4 ) =64 (AAA,AAC,ACA,CAA ... etc) 
Four letters (4 )=256 (AAAA,AAAC,AACA...etc) 

10 
10 letters (4 ) =1,048,000 

400 letters 

4 3' Oo0' Oo0' Oo0 letters-The practical equivalent of infinity. 

(4400) (one gene)=1,209 million billion billion 

(Mammalian DNA has 3,000,000,00~ bases) 

. 
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Table 3 .  Calculated t r i p l e t  f requencies  
and observed amino ac id  incorpora t ion  with s y n t h e t i c  
r ibonuc leo t ides  conta in ing  5 p a r t s  of A and 1 p a r t  of 
C (From Speyer and co-workers ( 5 ) )  . 
C a  1 cu l a  t ed T r i p l e t  R e  1 a t  ive Amino-Ac i d  Coding 

Frequency Incorpora t ion*  A ss i gnmen t s 

AAA - 100 Lysine 100 AAA 

CAA - 20 Threonine 26.5 ACA and CCA 

ACA - 2 0  Asparagine 2 4 . 2  CAA 

AAC - 20 Glutamine 23.7 AAC 

CCA - 4 Prol ine  7 . 2  CAC and CCC 

CAC - 4 His t id ine  6.5 ACC 

ACC - 4 

CCC - 0.8 
*Calculated on basis of l y s i n e  = 100 

. 
. 
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Table 4, The amino acid code: RNA triplets 
that have been found to correspond to the incorpor- 
ation of amino acids into polypeptides, The abbrevi- 
ations for the amino acids are in Table 1. Unassigned 

possibilities are indicated by -. 
I n  T-,”  
an  u y m  

3C Pro 

3G - 
3U Phe 

2A,1C GlN,thr,asN 

2A,1G Glu,arg - 
2A,1U Ilu,lys,asN 

lA, 2C His, pro, thr 

1A,2G Gly,glN - 
lA, 2U Tyr , leu, ilu 

lU,2G,Try,gly - 
lC, 2U Ser, phe, leu 

1G,2U Cys,leu,val 

1G,2C Arg,ala,thr 

1u,2C Ser,pro,leu 

lA, lC, 1G Ala, asp, ser - - - 

lA,lC,lU Tyr,his,ilu,asN,glN,thr 

lA,lG,lU Glu,asp,met - , - - 



. 
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I Figure 1. Illustrating the structure of part of a DNA molecule. 

The dotted lines indicate hydrogen -bonds that hold the two chains 

together. 

I Figure 2 .  Method of formation of two double strands of DNA (c) 

b from a parent double strand (a). In (b) the complementary Watson- 

Crick pairing that accompanies the repiicatfng pr~cedure is in 

progress. 
c 

Figure 3.  Formation of RNA ( . . . U A G C U G . . . )  by modified complementa- ~ 

tion with one strand of DNA. 

L 

. 
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